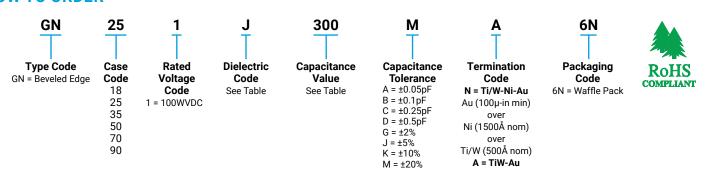


Case	Ref.
Size	W₁ or L1
S	.014 (.356)
T	.019 (.483)
U	.030 (.762)
Х	.045 (1.14)
Υ	.065 (1.65)
Z	.085 (2.16)


T depends upon capacitance value.

The GN Series – The beveled edges featured in the GN Series minimize the potential for cracking due to mechanical or thermal shock. The longer path along the beveled edge also provides additional protection against arc-over.

SELECTION GUIDE

Case S	Size		GN18			GN25			GN35		GN50			GN70			GN90		
Dimens (L&W n			018 (0.45 .003 (0.0			025 (0.63 0.005 (0.12		0.035 (0.889) ± 0.005 (0.127)			0.050 (1.27) ± 0.010 (0.254)		0.070 (1.78) ± 0.010 (0.254)		0.090 (2.29) ± 0.010 (0.254)				
Min. Thick	ness (T)	0.0	0045 (0.1	14)	0.0045 (0.114)		0.0045 (0.114)		0.0045 (0.114)		0.0045 (0.114)		0.0045 (0.114)						
Max. Thick	ness (T)	0.	012 (0.30)5)	0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)						
		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)							
Dielectric	к	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.
Α	14	0.1	0.2	A, B	0.2	0.4	A, B	0.4	0.9	A, B, C	0.6	2.0	B, C	1.3	3.6	B, C	2.4	5.6	B, C
1	31	0.3	0.4	A, B, C	0.4	1.0	B, C	0.8	1.8	B, C, D	1.3	4.3	C, D	3.0	8.2	C, D	5.1	13	D, J, K, M
2	60	0.5	0.9	B, C, D	0.8	2.0	C, D	1.5	3.9	C, D	2.7	9.1	D, J, K, M	6.2	16	D, J, K, M	10	24	G, J, K, M
3	130	0.9	2	C, D	1.5	4.3	D, K, M	3.3	8.2	D, J, K, M	5.6	18	J, K, M	12	33	J, K, M	22	56	G, J, K, M
5	165	1.2	2.4	C, D	2	5.6	D, K, M	4.3	10	D, J, K, M	7.5	24	J, K, M	15	43	J, K, M	27	68	G, J, K, M
4	200	1.5	3	D, K, M	2.4	6.8	D, K, M	5.1	12	J, K, M	9.1	30	J, K, M	20	51	J, K, M	33	82	G, J, K, M
7	420	2.4	5.6	K, M	4.3	12	K, M	9.1	22	J, K, M	15	47	J, K, M	33	91	J, K, M	56	150	G, J, K, M
Y	650	4.7	10	K, M	7.5	22	K, M	16	39	J, K, M	27	91	J, K, M	62	160	J, K, M	110	270	G, J, K, M
6	650	4.7	10	K, M	7.5	22	K, M	16	39	J, K, M	27	91	J, K, M	62	160	J, K, M	110	270	G, J, K, M
J	1100	7.5	15	K, M	15	36	K, M	27	68	J, K, M	47	160	J, K, M	100	300	J, K, M	180	470	J, K, M
F	2000	15	27	K, M	27	68	K, M	51	120	J, K, M	91	300	J, K, M	200	510	J, K, M	330	820	J, K, M
С	4000	33	68	K, M	56	150	K, M	110	270	J, K, M	200	680	J, K, M	430	1200	J, K, M	750	1800	J, K, M
G	6000	47	91	М	75	180	М	150	360	М	270	820	М	560	1600	М	1000	2400	М
K	9000	62	120	М	110	270	М	220	510	М	390	1200	М	820	2200	М	1500	3300	М
L	16000	110	220	М	180	510	М	390	910	М	680	2200	М	1500	3900	М	2400	6200	М

HOW TO ORDER

NOTE: "2" Dielectric is not RoHS Compliant

GN Series – SLC's With Beveled Edges Single Layer Ceramic Capacitors (SLC's)

TABLE I - Dielectric Codes, Types & Product Styles

Dielectr	іс Туре	Dielectric	Tomporature Coefficient	Tamparatura Banga	Min O at 1MU	Max. [F (%)*	ID (M:=) 25°0		
& Co	ode	Constant	Temperature Coefficient	Temperature Range	Min Q at 1MHz	1 MHz	1 kHz	IR (Min) 25°C		
	Α	14	+90±30PPM/°C		10,000	0.01	N/A			
NPO	1	31	0±30PPM/°C	-55°C to +125°C	660	0.15	N/A	10⁵Mohms		
	2**	60	0±30PPM/°C		660	0.15	N/A			
	3	130	-750±200PPM/°C		660	0.15	N/A			
	5	165	-1500±500PPM/°C		400	0.25	N/A			
Temp	4	200	±7.5% (non-linear)	-55°C to +125°C	400	0.25	N/A	10⁵ Mohms		
Comp	7	420	-2000±500PPM/°C	-55 6 10 +125 6	200	0.70	0.30			
	Υ	650	-4700±1500PPM/°C		400	0.30 0.30				
	6	650	±10% (non-linear)		60	1.50	1.50			
	J	1,100	+5% to -15% (non-linear)		40	2.50	2.00			
	F	2,000	±15% (non-linear)		40	2.50	2.00]		
X7R	С	4,000	±15%	-55°C to +125°C	25	4.00***	2.00***	10⁵ Mohms		
A/R	G	6,000	+10% to -75% max. change (non-linear)	-55 0 10 +125 0	40	2.50	2.00	10° MONINS		
	K	9,000	0% to -92% max. change (non-linear)		25	4.00	2.00			
	L	16,000	0/-92%		30	3.50	2.00			
X7S	Z	5,000-18,000	±22%	-55°C to +125°C	30	NA	2.5	10⁴ Mohms		
	8	20,000	±15%							
X7R	9	30,000	±15%	-55°C to +125°C	30	NA	2.5	10⁴ Mohms		
	0	60,000	±15%							

^{*}Capacitance & DF are measured at 1MHz for values \leq 100pF and 1 KHz for capacitance values >100pF

GH SERIES

GB SERIES

GP SERIES

GN SERIES

TABLE II

MIL Reference	Parameter	Method or Paragraph				
MIL-STD-883	Bond Strength	2011.7				
MIL-STD-883	Shear Strength	2019				
MIL-PRF-49464	Thermal Shock	4.8.3				
MIL-PRF-49464	Voltage Conditioning	4.8.3				
MIL-PRF-49464	Temperatue Coefficient	4.8.10				
MIL-STD-202	Low Voltage Humidity	103 A				
MIL-STD-202	Life Test	108				

^{**}NOTE: Code 2 DIELECTRIC IS NOT ROHS COMPLIANT

^{***}DF for the GP, GM, and the GA series with C dielectric is 6.5%

Microwave SLCs

GN Series – SLC's With Beveled Edges High Reliability Certification Program

Commercial Off The Shelf

High Reliability Certification Program

The COTS Program provides a cost efficient approach to qualifying standard products for enhanced reliability applications. This flexible program offers standard screening packages with options to support specifics of customer-driven program requirements.

Applications:

· Ruggedized Commercial

(Medical, Industrial, Telecommunications)

Military

(Ground, Naval, Airborne)

· Space/Satellite

HA HB HC HD Ultrasonic Ultrasonic Thermal Shock Thermal Shock HA HA HA HA Standard Standard Standard Standard Certification Certification Certification Certification Package Package Package Package Certification DPA DPA 85/85 85/85 85/85 Solderability Solderability Solderability Wire Bond Wire Bond Wire Bond Certification Certification Life Test Certification

HD

HC

COTS Screening Options

HD: Highest Screening Level

The highest screening option adds life testing as an assurance in mission critical applications and is often used as an alternative in space qualified applications.

HC: Airborne Applications

Often used in airborne applications, this profile closely models the military specifications.

HB: Additional Sample Testing

Built upon our standard HA Screening, this program provides additional sample testing to certify the termination for attachment integrity and the ability to survive and perform in high humidity environments.

HA: Standard Upscreen Package

ATC's Standard Hi Rel certification screening profile is typically used as a lower cost means to certify product reliability. HA screening is used throughout the industry in ground based military applications as well as stringent commercial applications.

P/N Prefix				Evaluation Operation	Sample
НА	НВ	нс	HD		Size
		Х	х	Ultrasonic Screening†	100%
		Х	Х	Thermal Shock (5 Cycles for HC and 20 Cycles for HD)	100%
Х	Х	Х	Х	Standard Hi-Rel Certification Package (HA)	100%
		Х	Х	Destructive Physical Analysis	see table*
	х	Х	Х	85/85 (Low Voltage Moisture Humidity)	13 units*
	х	Х	Х	Solderability (Solderable or Solder Coated Only)	5 units*
	х	Х	Х	Wire Bond Test (Gold Terminated Chips Only)	13 units*
			Х	Life Test (2000)	25 units*

DPA Sample Table					
Lot Size	Sample				
1 - 500	14				
501 - 10,000	32				
10,001 - 35,000	50				
35,001 and up	80				

[†] Ultrasonic Screening does not apply to SLC products

^{*} Additional sample units required that have passed the 100% testing along with the deliverable (flight) quantity