Microwave SLCs GP Series – SLC's With Borders Single Sided Recessed Metalization

GP SERIES SINGLE RECESSED METALIZATION SLCs – have been designed to minimize potential shorting resulting from epoxy or solder attachments. Contact KAVX for further information.

FEATURES

- Capacitance Range: 0.05 pF to 1800 pF
- Exposed Borders for: Automated Visual Equipment, Solder Resist Area to Reduce Shorts
- Operating Frequency up to 100 GHz

APPLICATIONS

- · Microwave Integrated Circuits
- Automated MIC Construction
- · Chip and Wire Construction
- Matching and Filtering Circuits
- · Bypass and Coupling

Case Size		GP15		GP20		GP25		GP30		GP35		GP40		GP50								
Dimensions (L&W nom.)		0.015 (0.381) ± 0.002 (0.0508)		0.020 (0.508) ± 0.002 (0.0508)		0.025 (0.635) ± 0.002 (0.0508)		0.030 (0.762) ± 0.002 (0.0508)		0.035 (0.889) ± 0.002 (0.0508)		0.040 (1.016) ± 0.002 (0.0508)		0.050 (1.270) ± 0.002 (0.0508)								
Recessed Metallization (LW)		0.11 (0.279) + 0 / - 0.003 (0.0762)			0.016 (0.406) + 0 / - 0.003 (0.0762)		0.021 (0.533) + 0 / - 0.003 (0.0762)		0.026 (0.660) + 0 / - 0.003 (0.0762)		0.031 (0.787) + 0 / - 0.003 (0.0762)		0.036 (0.914) + 0 / - 0.003 (0.0762)		4) .0762)	0.046 (1.168) + 0 / - 0.003 (0.0762)						
Min. Thickness (T)		0.0045 (0.114)			0.0045 (0.114)			0.0045 (0.114)		0.0045 (0.114)		0.0045 (0.114)			0.0045 (0.114)			0.0045 (0.114)				
Max. Thickness (T)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)		0.012 (0.305)								
Dielectric	к	Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)		Capacitance (pF)								
		Min.	Max.	Tol.	Min.	Мах.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.	Max.	Tol.
A	14	0.06	0.1	A	0.2	0.2	A, B	0.2	0.3	A, B	0.3	0.4	A, B	0.4	0.6	A, B	0.5	0.9	B, C	0.8	1.3	B, C
1	31	0.2	0.2	A, B	0.3	0.4	B, C	0.4	0./	B, C	0.6	1.0	B, C, D	0.8	1.5	C, D	1.1	2.0	C, D	1.8	3.0	C, D
2	120	0.3	0.4	B,C	0.5	1.0	C, D	1.0	1.3	C, D	1.2	2.0		1.0	3		2.2	3.9	C, D	3.0	0.Z	D, K, IVI
5	165	0.0	1.2	C, D	1.0	2.0	D, D	1.0	30	D, M	2.4	4.3	D, K, M	3.0	7.5	K M	4.7	0.2	K M	7.5 0.1	15	K, IVI
4	200	0.7	1.2	р м	1.5	2.2	рм	2.2	47	<u>, м</u>	3.9	6.8	K M	51	91	K M	6.8	13	K M	11	20	K M
7	420	1.5	2.4	D, M	2.7	4.7	M	4.7	8.2	M	6.8	12	K, M	9.1	16	К, М	12	22	К, М	20	36	К, М
Y	650	2.7	4.7	M	4.7	9.1	М	8.2	15	М	12	22	К, М	18	30	К, М	22	39	К, М	36	62	К, М
6	650	2.7	4.7	м	4.7	9.1	М	8.2	15	М	12	22	K, M	18	30	К, М	22	39	К, М	36	62	К, М
J	1100	4.7	7.5	М	8.2	15	М	15	24	М	22	36	K, M	30	51	К, М	39	68	К, М	62	110	К, М
F	2000	9.1	13	М	16	27	М	27	47	М	39	68	К, М	51	91	К, М	68	120	К, М	110	200	К, М
С	4000	20	33	м	36	62	М	56	100	М	91	150	К, М	120	200	К, М	160	270	К, М	270	430	К, М
G	6000	27	43	М	47	82	М	75	130	М	120	200	М	160	270	М	220	360	М	330	620	М
К	9000	39	56	М	68	110	М	120	180	М	180	270	М	240	390	М	330	510	М	510	820	М
L	16000	68	100	М	120	180	М	200	300	М	300	470	М	390	620	М	510	820	М	820	1800	м

HOW TO ORDER

NOTE: "2" Dielectric is not RoHS Compliant

KYDCERA The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-RFSLC-0007 | Rev 1

TABLE I - Dielectric Codes, Types & Product Styles

Dielectr	іс Туре	Dielectric	Tomporature Coofficient	Temperature Denge	Min O at 1MHz	Max. D)F (%)*	ID (Min) 25°C		
& Co	ode	Constant	remperature Coerncient	remperature kange		1 MHz	1 kHz			
	A	14	+90±30PPM/°C		10,000	0.01	N/A			
NPO	1	31	0±30PPM/°C	-55°C to +125°C	660	0.15	N/A	10⁵Mohms		
	2**	60	0±30PPM/°C		660	0.15	N/A			
	3	130	-750±200PPM/°C		660	0.15	N/A			
	5	5 165 -1500±500PPM/°C			400	0.25	N/A]		
Temp	4	200	±7.5% (non-linear)	55°0 to 1105°0	400	0.25	N/A	- 10 ⁵ Mohms		
Comp	7	420	-2000±500PPM/°C	-55 C 10 +125 C	200	0.70	0.30			
	Y	650	-4700±1500PPM/°C		400	0.30	0.30			
	6	650	±10% (non-linear)		60	1.50	1.50			
	J	1,100	+5% to -15% (non-linear)		40	2.50	2.00			
	F	2,000	±15% (non-linear)		40	2.50	2.00			
	С	4,000	±15%	55°0 to 1105°0	25	4.00***	2.00***	- 10⁵ Mohms -		
X/R	G	6,000	+10% to -75% max. change (non-linear)	-55 C 10 +125 C	40	2.50	2.00			
	К	9,000	0% to -92% max. change (non-linear)		25	6.00	2.00			
	L	16,000	0/-92%		30	3.50	2.00			
X7S	Z	5,000-18,000	±22%	-55°C to +125°C	30	NA	2.5	10⁴ Mohms		
	8	20,000	±15%							
X7R	9	30,000	±15%	-55°C to +125°C	30	NA	2.5	10⁴ Mohms		
	0 60,000		±15%							

*Capacitance & DF are measured at 1MHz for values \leq 100pF and 1 KHz for capacitance values >100pF

**NOTE: Code 2 DIELECTRIC IS NOT RoHS COMPLIANT

***DF for the GP, GM, and the GA series with C dielectric is 6.5%

TABLE II

MIL Reference	Parameter	Method or Paragraph
MIL-STD-883	Bond Strength	2011.7
MIL-STD-883	Shear Strength	2019
MIL-PRF-49464	Thermal Shock	4.8.3
MIL-PRF-49464	Voltage Conditioning	4.8.3
MIL-PRF-49464	Temperatue Coefficient	4.8.10
MIL-STD-202	Low Voltage Humidity	103 A
MIL-STD-202	Life Test	108

KUCERA AWXXX The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

TDS-RFSLC-0007 | Rev 1

Microwave SLCs GP Series – SLC's With Borders High Reliability Certification Program

HD

Ultrasonic

Thermal Shock

HA

Standard

Certification

Package

╈

DPA

▼

85/85

╈

Solderability

Wire Bond

Life Test

Certification

HC

Ultrasonic

Thermal Shock

HA

Standard

Certification

Package

DPA

Ŧ

85/85

Solderability

Wire Bond

Certification

HD

HC

HB

HA

Standard

Certification

Package

85/85

Solderability

Wire Bond

Certification

HA

HA

Standard

Certification

Package

Certification

Commercial Off The Shelf

High Reliability Certification Program

The COTS Program provides a cost efficient approach to qualifying standard products for enhanced reliability applications. This flexible program offers standard screening packages with options to support specifics of customer-driven program requirements.

Applications:

Ruggedized Commercial

(Medical, Industrial, Telecommunications)

- Military
- (Ground, Naval, Airborne)
- Space/Satellite

Availability:

Contact KYOCERA AVX for more information regarding which parts are eligible for high reliability screening and any custom options.

COTS Screening Options

HD: Highest Screening Level

The highest screening option adds life testing as an assurance in mission critical applications and is often used as an alternative in space qualified applications.

HC: Airborne Applications

Often used in airborne applications, this profile closely models the military specifications.

HB: Additional Sample Testing

Built upon our standard HA Screening, this program provides additional sample testing to certify the termination for attachment integrity and the ability to survive and perform in high humidity environments.

HA: Standard Upscreen Package

KYOCERA AVX's Standard Hi Rel certification screening profile is typically used as a lower cost means to certify product reliability. HA screening is used throughout the industry in ground based military applications as well as stringent commercial applications.

P/N Prefix				Evaluation Operation	Sample	
НА	НВ	нс	HD		Size	
		х	х	Ultrasonic Screening†	100%	
		х	х	Thermal Shock (5 Cycles for HC and 20 Cycles for HD)	100%	
х	х	х	х	Standard Hi-Rel Certification Package (HA)	100%	
		х	х	Destructive Physical Analysis	see table*	
	х	х	х	85/85 (Low Voltage Moisture Humidity)	13 units*	
	х	х	х	Solderability (Solderable or Solder Coated Only)	5 units*	
	х	х	х	Wire Bond Test (Gold Terminated Chips Only)	13 units*	
			х	Life Test (2000)	25 units*	

+ Ultrasonic Screening does not apply to SLC products

😢 KUDCERE | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available

online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.